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Abstract—The linear wave instability of laminar mixed convective flow over an isothermal horizontal flat
plate is studied analytically. The main flow and thermal fields employed in the stability analysis are
treated as non-parallel. The system of linearized, coupled differential equations and their boundary
conditions for the velocity and temperature disturbances constitutes an eigenvalue problem that is solved
by a direct Runge-Kutta numerical integration scheme along with an iteration procedure. A filtering
technique is employed to remove the truncation errors inherent in the numerical integration of the
disturbance equations. Neutral stability curves and critical Reynolds numbers are presented for a range of
values oi buoyancy parameter covering both assisting and opposing flow situations for Prandtl numbers
of 0.7 and 7.0. In general, it is found that the flow becomes less stable as the buoyancy force increases for
assisting flow and more stable as the buoyancy force increases for the opposing flow. The regions of
stable and unstable flows are also mapped out in a Grashof number vs Reynolds number plane. Finally, the
present results from wave instability are compared with those from vortex instability.

NOMENCLATURE

dimensionless phase velocity;

real part of ¢;

imaginary part of ¢;

specific heat at constant pressure ;
differential operator, d"/dn";

reduced stream function, equation (8);
E-derivative of F;

gravitational acceleration ;

local Grashof number, gf(T,, — T, )x*/v?;
Grashof number based on L,

gB(T,,— T, )L/v?;

thermal conductivity;

characteristic length, (vx/u_ )"/?;
mainflow pressure;

Prandt]l number ;

local Reynolds number, ux/v;
Reynolds number based on L, u L/v;
dimensionless temperature disturbance
amplitude function;

mainflow temperature ;

wall temperature ;

free stream temperature ;

time ;

dimensionless mainflow axial velocity
component ;

mainflow axial velocity component ;
free stream velocity;

dimensionless mainflow normal velocity
component ;

mainflow normal velocity component ;
axial coordinate;

normal coordinate.
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Greek symbols
o, dimensionless wavenumber based on L;
B, coefficient of thermal expansion ;
n, pseudo-similarity variable,
equation (6);
., dimensionless boundary-layer thickness;
8, dimensionless temperature, equation (8);
v, kinematic viscosity;
g, buoyancy parameter, |Gr J/Re3/?;
0, density;
o, &-derivative of 8
¢, dimensionless velocity disturbance
amplitude function;
v, stream function of mainflow.
Superscripts

'

perturbation quantity;
total quantity (mainflow quantity plus
perturbation quantity).

INTRODUCTION

IN MANY transport processes involving forced con-
vection, the flow may be modified considerably by
buoyancy forces due to temperature variations in the
fluid. As a result of the buoyancy force effects, the
flow regime may be affected such that the forced flow
becomes unstable and the transport characteristics
change. It is, therefore, of great importance to
analyze the stability characteristics of laminar mixed
forced and free convection flow. There are two
modes of instability, the Tollmien—Schlichting wave
instability and the thermal or vortex instability,
which commonly arise in laminar flow over a
horizontal or inclined surface in the presence of
temperature variations in the fluid.
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The linear stability of the plane-wave mode of
disturbances (i.e. the Tollmien—Schlichting waves)
for Blasius flow has been studied extensively under
both parallel and nonparallel main flow assump-
tions. It has been shown [1] that for forced
convection the nonparallel flow model contributes to
the destabilization of the main flow. In addition, in
the absence of buoyancy force effect, it has been
found that when the effect of viscosity variation with
temperature s included, heating of the fluid has a
stabilizing effect, whereas cooling has a destabilizing
effect [2]. The linear wave instability of free
convection flow over horizontal and inclined surfaces
has been studied, but not as extensively as for the
case of vertical flat plates. Gebhart [3] has made an
excellent survey of analytical and experimental
studies on this subject. It has been found that in such
flow situations the coupling of temperature and
velocity disturbances has a destabilizing effect.
Recently, Haaland and Sparrow [4] investigated the
plane-wave instability of free convection on inclined
surfaces. They found that, as compared to the
parallel flow model, treating the main flow as
nonparallel shifts the neutral stability curves to
higher Grashof numbers and higher wave numbers.
They also found that as the angle of plate inclination
relative to the horizontal is increased from 45 to
135°, i.e. from upward-facing (45-90°) to downward-
facing (90-135°), the flow becomes more and more
stabilized. This is in agreement with the experimental
results of Lock et al. [5]. From a study of plane-
wave instability of free convection boundary-layer
flow over horizontal and slightly inclined surfaces,
Pera and Gebhart [6] also concluded that in-
clination stabilizes the flow.

Recently, the thermal or vortex instability of
horizontal, laminar forced convection boundary-
layer flow has received some attention [7, 8]. In a
study on the instability of longitudinal vortices in
forced convection flow adjacent to a horizontal flat
plate, i.e. the Blasius flow, Wu and Cheng [7]
employed a nonparallel flow model and considered
the streamwise variation of the main flow and
temperature fields in their analysis. They obtained
the critical values of Gr /Re?'? (in which Gr, and Re,
are, respectively, the local Grashof number and the
local Reynolds number) for Prandt]l numbers rang-
ing from 1072 to 10* and found that as the Pranditl
number increases the critical value of Gr,/Re?
decreases.

In an analysis of laminar mixed convection flow
over horizontal flat plates, Chen et al. [9] showed
that the buoyancy forces arising from density
variations due to the temperature gradients in a fluid
modify considerably its flow and thermal fields. It is,
therefore, of great interest to examinine the effects of
buoyancy force on the stability characteristics of
such a mixed convection flow. This has motivated
the present investigation.

The present study deals with linear plane-wave
instability of laminar, mixed forced and free con-
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vection boundary-layer flow along an isothermal
horizontal flat plate. In the analysis, the temporal
mode of disturbances are considered, and the main
flow and thermal fields are derived from the local
nonsimilarity solution. The main feature of this
solution for the main flow is that it provides accurate
flow and thermal fields that are continuous functions
of the coordinate system. The governing differential
equations of the disturbances for the velocity and
temperature fields, which are coupled through the
buoyancy forces, are obtained by linearization in
which the nonparallelism of the main flow and
thermal fields are taken into account. The resulting
eigenvalue problem is solved by a direct
Runge-Kutta integration scheme along with an
iteration procedure. To remove the “parasitic errors”
inherent in the numerical integration of the distur-
bance equations, a filtering technique introduced by
Kaplan [10] is employed after each step of in-
tegration. Neutral stability curves and critical Rey-
nolds numbers are presented for a range of values
of buoyancy parameter covering both assisting and
opposing flows, for Prandtl numbers of 0.7 and 7.
The stable and unstable flow regimes are distin-
guished in terms of critical Reynolds and Grashof
numbers. Finally, the critical Reynolds numbers
from the present analysis for plane-wave instability
are compared with the analytical results of Wu and
Cheng [7] and the experimental data of Gilpin et al.
[11] from the standpoint of thermal instability.

ANALYSIS
The main flow and thermal fields
In analyzing the flow stability characteristics, one
needs to know the velocity and temperature fields of
the main flow. In the present analysis, the main flow
quantities are derived from the work of Chen et al.
[9], who employed a local nonsimilarity method to
solve the transformed conservation equations of the
laminar boundary layer. The system of differential
equations describing the main flow as given by Chen
et al. [9] for the local nonsimilarity model truncated
at the second level are:
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with the boundary conditions
F'(¢,0) = F(£,0) = G'(£,0) = G(£,0) = 9(£,0) = 0,
0(¢,0)=1 (5a)

1 0 1 0
F"(&,0) = ¢~ff 9d'1¥552 [ ®dn  (5b)
o

27 Jo .

G"(E,0) = #r Hdniéérd)dn (50)
20, 2 1,
FI(&,00) = 1, G'(& ) = 0, 00) = (&, 00) = 0.
(5d)

In the foregoing equations, the buoyancy parameter
£(x) and the pseudosimilarity variable #(x,y) are
defined, respectively, as

where x and y are the axial and normal coordinates,
u,, is the free stream velocity, and the local Grashof
number Gr, and the local Reynolds number Re, are
defined, respectively, by

Gr, = gB(T, =T )X*)%, Rey=uxpv. (1)
The reduced stream function F(¢,7) and the dimen-

sionless temperature 8(&,7) have the expressions

l/I(X, J/) — T— Too
("’usox)lﬂ’ Tw_Too

F(&n) = 6(,n) ®)
where T, is the wall temperature, T, is the free
stream temperature, and ¥(x) is the stream function

that satisfies the continuity equation with

oy oy
v _w

oy’ ax’

©)

The primes in equations (1)-(5) denote partial
differentiation with respect to n and the dependent
variables G and @ are defined by

oF 00
= O0=_. 10
e % (10)

The upper sign in the dual signs + or F in front of
some of the terms in equations (1), (2) and (5) apply
to assisting flow (i.e. T,,> T, for flow above the plate
and T, < T,, for flow below the plate) and the lower
sign to opposing flow (ie. T,<T, and T,>T,,
respectively, for flow above and below the plate). For
flow below the plate, however, the temperature
difference in the Gr, expression needs to be replaced

by (T, ~ T.).

Formulation of the stability problem

Consider a two-dimensional flow over a horizon-
tal flat plate with velocity components & and g,
respectively, in the streamwise and transverse direc-
tions (i.e. in the x and y coordinates), static pressure
p, and temperature T. If the main flow quantities are
u, v, p and T, upon which are superposed the

perturbation quantities »', v/, p’ and T’, one can
write

i =ulx,y)+u'(x,y,t)

v=v(x,y)+v(x, 1) 1
p=pxy)+p(x 1)
T=T(xy)+T(x,y1)

Since the main flow satisfies the conservation
equations, substitution of equation (11) into
Navier-Stokes equations and the energy equation
for incompressible, two-dimensional time dependent
fluid fiow, followed by subtraction of the main flow
and linearization of the disturbance quantities leads
to the following disturbance equations:
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a ox 0x dy 0Oy
1ép 2w 0%
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The positive and negative signs in front of the
buoyancy term in equation (13) refer, respectively, to
flows above and below the plate.

The next step is to eliminate the pressure terms in
equations (12) and (13) by cross-differentiation and
subtraction. The resulting equation is further simp-
lified by employing the continuity equation Ju/dx
+0v/0y = 0 and the boundary-layer approximations

d%u <<62u 3% « o T o*T

e K, s K, e K ——,

ox2 ayr’ ax? ayr ox?  8y?
With these operations, equations (12) and (13) can
be combined to yield

(15)
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For the case in which the main flow and thermal
fields are treated as parallel, [that is, u = u(y), v =0,
and T = T(y)], the two terms involving v and 0T /dx
in equation (14) and the three terms involving v and
0%v/0y? in equation (16) vanish from these equations.
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In the present study, the main interest is to
investigate the effects of the non-parallelism of the
main flow and thermal fields on the wave instability
characteristics of the flow. Thus, the disturbances are
assumed to have the form of a plane wave travelling
in the streamwise direction x, with its amplitude
function depending only on y. The perturbation
velocities and temperature are then related to their
respective disturbance amplitude functions ¢ and s’
through the expressions

Yy t) = @'(y)e e (17)

T’(x, y’ t) — S/(y)eiz'(x—(-’t) (]8)
where Y’ is the stream function of the flow
disturbances which satisfies the continuity equation
with

= (19)

For the temporal mode of disturbances, the wave
number o is a positive real number and the phase
velocity ¢ = ¢, +ic; is a complex number. The real
part of ¢, c., represents the phase velocity of wave
propagation, while the imaginary part ¢; determines
the attenuation or amplification of disturbances. The
flow is stable, neutrally stable, or unstable depending
on whether ¢} is negative, zero, or positive.

Substituting «’, v and T’ from equations (17)—(19)
into equations (16) and (14) results in

2 N 82
(—c)( - o ) #
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‘*[(m, “Ef*&?gﬂiws
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(20)
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Next, equations (20) and (21) are non-

dimensionalized by introducing the following dimen-
sionless quantities

y U u v v s
= - = —, =— §=
1 L Uy, Uy, Tu - Ta(
22)
C/ d)/ T__ T*w
— I — g =
C - a=aol, ¢ L T,
where the characteristic length L is defined by
vx \'?
L= ( > . (23)
‘\M\XJ

The end result is
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(25)

where D" = d"/dp", & = |Gr,|/Rel? is the buoyancy
parameter as defined by equation (6) and Re,
=u,L/v is the Reynolds number based on the
characteristic length L. The plus and minus signs in
front of the buoyancy term in equation (24) apply for
assisting and opposing flows, respectively. In arriving
at equation (25), use is made of the relation

oT o0on o6de
- E T 26
ox (T, m)(ﬁn 0x 6fdx> (26)

The boundary conditions for equations (24) and
(25) require that the disturbance velocities ’, v, and
temperature T’ vanish at the plate surface and in the
free stream outside the boundary layer. That is,

’ ’

W=v'=T =0 at (27a)

(27b)

y:O

W=v'=T =0 as y-wx.

In terms of the amplitude functions ¢ and s these
boundary conditions can be replaced with

¢p=Dp=s5s=0 at n=0 (28a)

¢ =D¢ = n— o0 (28b)

The main flow quantities U, ¥, 6 and their
derivatives appearing in equations (24) and (25) can
be obtained from the solution of the main flow
problem described by the system of equations
(1)—(5). In particular, one can show that

oF &*U  &F

1 ( (7F
= —-{n fv
2Re;, 61] o0&

s—0 as

@ZV_ 1 2°F n O’F é@zG 29)
M*  2Re, \n? 1 and T on?

Dy Oy

P o

The eigenvalue problem consisting of the coupled
differential equations (24) and (25) along with the
boundary conditions, equations (28), is of the form

E(Rep,a,c,,c; ; E,Pr)= (30)

The solution of equation (30) for given Pr and ¢
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gives a relationship among «, Re,, ¢,, and ¢;. In
determining the neutral stability curves, the values of
¢, and a or Re, satisfying equation (30) are sought as
the eigenvalues for given values of Re; or a with ¢;
=0.

NUMERICAL METHOD OF SOLUTION

The solutions to the main flow and thermal fields,
as described by the system of equations (1)-(5) for
the local nonsimilarity two-equation model, were
carried out by a predictor—corrector integration
scheme to improve the accuracy of the Runge-Kutta
integration. A modified Newton—Raphson shooting
method was employed tofulfil the conditionsat theedge
ofthe boundary layers. The details can be found in Chen
et al. [9].
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are then determined by a differential correction
shooting method until the boundary conditions for ¢
and s at the wall, equations (28a), are satisfied. The
highlights of the numerical procedures are given in
the Appendix.

In the numerical integration of the stability
equations, a step size of Ay = 0.04 was found to be
adequate for all the parameters ¢ that were in-
vestigated. On the other hand, the step size for the
integration of the main flow and thermal fields was
taken as Ay = 0.02. In the numerical integrations of
both the stability and main flow/thermal fields, the
boundary layer thickness 7., ranged from 8 to 7 as
the ¢ parameter was varied from —0.02 to 0.10. All
computations were performed on an IBM 370/165
digital computer using double precision arithmetic.

Table 1. Results for F”(£,0) and —8'(¢,0), Pr=0.7 and 7

Pr=07 Pr=17

Gr/ReS?  F'(E0) —0(E0) Gr/ReS®  F'(£0) —6(0)

—0.0200 0.2961 0.2851

—0.0150 0.3065 0.2874 —0.0075 0.3284  0.6442

—0.0100 0.3148 0.2895 —0.0050 0.3297  0.6449

—-0.0010 0.33033  0.29232 —0.0010 033162 0.64584

—0.0005 033119 029251  —0.0005 0.33186 0.64596
0 0.33206 0.29268 0 0.33206 0.64591
0.0010 0.33377  0.29304 0.0010 033257 0.64634
0.0025 0.33633 029357 0.0025 033328 0.64671
0.0050 0.3406 02944 0.0050 0.3344  0.6472
0.0075 0.3448  0.2953 0.0075 0.3356  0.6478
0.01 0.3489  0.2961 0.01 0.3370  0.6484
0.02 0.3650  0.2993 0.02 0.3414  0.6508
0.03 0.3806  0.3023 0.03 0.3460  0.6531
0.04 0.3959 0.3051 0.04 0.3505  0.6554
0.05 04099 03077 0.05 03548  0.6576
0.06 0.4245 0.3104 0.06 0.3591 0.6598
0.07 04377  0.3126 0.07 0.3635 0.6619
0.08 04512  0.3148 0.08 0.3678 0.6641
0.09 04640 03171 0.09 03720  0.6661
0.10 04767 03193 0.10 0.3761 0.6682

In solving the mathematical system for the
stability problem, equations (24), (25) and (28), the
Runge-Kutta integration scheme was used along
with a filtering technique of Kaplan [10] to supress
the growth of the parasitic errors inherent in the
numerical integration. To start the integration, the
boundary conditions as expressed by equations (28b)
need to be replaced by appropriate conditions that
are satisfied at a finite distance 7, from the plate, i.e.
at the edge of the boundary layer. This can be
achieved by obtaining the general solution of
equations (24) and (25) evaluated at n =1#,. As
shown in the Appendix, this gives rise to three sets of
independent solutions (¢q,sy), (¢,,5;), and (¢s,s;3)
at n=rn,. For each set of the solutions, the
integration of equations (24) and (25) starts at the
edge of the boundary layer (4 =5, ) and proceeds
towards the wall (n = 0). For prescribed values of Pr
and ¢, and with pre-assigned values of, say, Re; and
¢; or ¢, and ¢, the eigenvalues o and ¢, or Re; and ¢,

RESULTS AND DISCUSSION

Numerical results were obtained for fluids with
Prandtl numbers of 0.7 and 7 which are typical for
air and water, respectively. The buoyancy force
parameter Gr./Re3’? in the computations ranged
from 0 to 0.1 for assisting flow (Gr, /Re2*>>0) for
both Prandtl numbers. For the opposing flow case
(Gr./Re¥?<0), solutions were obtained for
Gr./Re¥? values ranging from 0 to —0.02 for Pr
=0.7 and from 0 to —0.0075 for Pr=7. The
numerical results of F”(£,0) and —&(&,0) from the
solutions of the main flow and thermal fields are
tabulated in Table 1.

Figures 1 and 2 show the neutral stability curves
for representative buoyancy parameters, respectively
for Prandtl numbers of 0.7 and 7. In the figures, the
points along a neutral curve represent a neutrally
stable flow (c; =0), the region inside the curve
corresponds to an unstable flow (¢;>0), and that
outside the curve to a stable flow (¢;<0). From Figs.
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FI1G. 2. Representative neutral stability curves, Pr = 7.

1 and 2, it can be seen that for assisting flow
(Gr./Re3?>0), the neutral stability curves for both
Pr = 0.7 and 7 shift to a lower Reynolds number Re,
as the buoyancy parameter Gr,/Re®? increases; that
is, the flow becomes less stable. This stability
characteristic is believed to arise from the transfer of
energy between the temperature and velocity distur-
bances in the forced flow. In the case of assisting
flow, the buoyancy forces acting in the direction
normal to the forced flow aid in moving the fluid
particles away from the plate, and the interaction
between the thermal and flow disturbances contri-
butes to the destabilization of the forced flow. For
the opposing flow, on the other hand, the flow
becomes more stable as the buoyancy forces in-
crease; that is the neutral stability curve shifts to a

higher Reynolds number as Gr /Re>? increases in
the negative sense. In this case, the buoyancy forces
aid in moving the fluid particles toward the plate and
the interaction between thermal and flow disturbances
enhances the stabilization of the forced flow. These
behaviors of the neutral stability curves for assisting
and opposing flow situations are similar to those
obtained by Chen et al. [, 12] for isothermal forced
flow over horizontal plates with surface mass
injection and suction, respectively.

An inspection of Figs. 1 and 2 reveals also that for
assisting flow with certain buoyancy parameters,
there exists more than one neutral stability curve for
the same Gr,/Re3? value, each curve having a
distinct range of phase speeds ¢, and providing a
different critical Reynolds number at a different
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critical wavenumber. For example, for Pr=7 and
for a buoyancy parameter of Gr,/Re}’* = 0.1, one
can see (Fig. 2) that there are three neutral stability
curves. The three critical Reynolds numbers based
on the characteristic length L, Ref = (u,L/v)., are
Re} = 3.3, 15.6, and 22. The corresponding critical
wavenumbers are a* = 0.065, 0.205, and 0.26 (with
critical wave velocities ¢ = 0.947, 0.595, and 0.558),
respectively. The maximum wavenumbers for the
respective neutral curves are 0.175, 0.220, and 0.783.
One can thus conclude that for Gr,/Re3? = 0.1 and
Pr =7, all disturbances will decay when Re; <3.3,
disturbances with wavenumbers larger than 0.175
will decay when Re, < 15.6, and those with wave-
numbers larger than 0.220 will die out when Re; < 22.
However, by considering the fact that disturbances in
general travel with all possible wavenumbers, one
will have to select the smallest of the critical
Reynolds numbers, Ref¥ = 3.3, as the basis for the
stability criterion in the above example. The exis-
tance of multiple neutral stability curves for the same
buoyancy parameter will be explained later when the
neutral stability curves from various flow models are
compared in Figs. 6 and 7.

The critical Reynolds number Re}, along with the
corresponding critical wavenumbers o* and critical
wave velocities ¢* for the Gr,/Re'* parameters that
were investigated are listed in Tables 2 and 3,
respectively for Pr = 0.7 and 7.

The critical Grashof numbers Grf (based on the
characteristic length L) vs the critical Reynolds
numbers Re} are plotted in Figs. 3, 4 and 5. These
results are computed from the critical Reynolds
numbers Re} at various buoyancy parameters
Gr,/ReX'?. From the definition of Gr;,

Gr, = gB(T,~ T,)D/v* = Gr./Res””  (31)

and from equations (6), (7) and (23), one can arrive

Table 2. Critical stability characteristics for

Pr=0.7
Gr./Re3? ax Re} c*

-0.0200 0.100 3515 0.224
-0.0150 0.137 925 0.309
—0.0100 0.156 551 0.349
—0.0010 0.176 305 0.399
—0.0005 0.177 297 0.401
0 0.177 290 0.403
0.0010 0.180 276 0.408
0.0025 0.183 257 0414
0.0050 0.185 230 0.424
0.0075 0.188 207 0.435
0.01 0.190 188 0.443
0.02 0.203 132 0.481
0.03 0.210 99.0 0.514
0.025 279 0.886

0.04 0.215 76.0 0.548
0.070 9.5 0.928

0.05 0.220 59.8 0.583
0.085 6.6 0.960

0.06 0.222 47.5 0.620
0.090 5.4 0.944

0.07 0.223 37.2 0.663
0.093 4.6 1.017

0.08 0.095 4.0 1.043
0.09 0.100 3.7 1.061
0.10 0.102 34 1.079

at the relationships

Re, = Re}, Gr./Red? = Gry/Re:. (32)

Figures 3 and 4 show the Gr} vs Ref plots,
respectively, for Pr=0.7 and 7 for all the assisting
flow parameters investigated and for the opposing
flow cases with low buoyancy force parameters. The
curves in Figs. 3 and 4 separate the stable flow
region from the unstable one with regard to wave
instabilities. Any flow condition as determined by
any combination of the Reynolds number Re, and
Grashof number Gr;, that lies above the curves

Table 3. Critical stability characteristics for Pr = 7

Gr,/Re3? a* Re} cx Gr./Rel? o* Re} cx
—0.0075 0.125 1066 0.316 0.04 0.235 59.2 0.489
—0.0050 0.150 539 0.362 0.105 24.0 0.507
—0.0010 0.175 318 0.397 0.030 9.9 0.785
—0.0005 0.176 303 0.401 0.05 0.240 479 0.501

0 0.177 290 0403 0.120 22.5 0.530
0.0010 0.183 266 0.408 0.040 7.2 0.815
0.070 28.8 0.420 0.06 0.245 39.8 0.513
0.0025 0.185 238 0414 0.135 20.9 0.548
0.070 28.7 0.421 0.045 57 0.850
0.0050 0.190 201 0.424 0.07 0.255 33.8 0.524
0.071 28.5 0425 0.152 19.4 0.564
0.0075 0.197 175 0.432 0.052 48 0.879
0.074 28.0 0.432 0.08 0.275 293 0.534
0.01 0.200 155 0.438 0.170 18.0 0.577
0.080 27.5 0.451 0.060 42 0.892
0.02 0.220 103 0.460 0.09 0.230 249 0.548
0.085 26.5 0.464 0.185 16.7 0.585
0.004 50.0 0.716 0.062 37 0927
0.03 0.225 76.0 0.475 0.10 0.260 22.0 0.558
0.095 253 0.488 0.205 15.6 0.595
0.017 16.5 0.751 0.065 33 0.947
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represents an unstable flow situation, while any point
lying below the curves represents a stable one. For
Prandtl number of 7, for example, a critical Grashof
number of Gr} = 210 (Fig. 4) gives a corresponding
critical Reynolds number of Ref = 100. From the
relationships between Re; and Re,, equation (32),
one finds that Re* = 10*. Thus, for a Reynolds
number of Re; = 100 or Re, = 10* the flow will be
stable to small disturbances when Gr, <210 or, from
equation (32), Gr, <2.1 x 10® and unstable when Gr,
>210 or Gr,>2.1x10% Similarly, when Gr, = 210
(or Gr,=21x10%) the flow will be stable when

100 < Re; < 193 (or 10* < Re, < 3.73 x 10*) and un-
stable when Re; <100 or Re;>193. A comparison
between Figs. 3 and 4 indicates that for assisting flow
with Reynolds numbers Re, >30 (ie. Re,>900),
fluids with a Prandtl number of 0.7 are generally
more stable to small disturbances than fluids with a
Prandtl number of 7. However, the effect of the
Prandtl numbers on the stability characteristics of
the flow diminishes when Re, < 900.

The results of Wu and Cheng [7] for the thermal
(or vortex) instability of Blasius flow over a
horizontal flat plate are also shown with dotted lines,
respectively, in Figs. 3 and 4 for comparisons with
the present wave instability results. The region below
the dotted line represents flow conditions which are
stable to vortex instabilities, while the region above
pertains to flow conditions that are unstable to
vortex instabilities. It can be seen from Fig. 3 for Pr
= 0.7 that for Reynolds numbers Re, <98 and Re,
>218 or Re,<9.6x10® and Re, >4.75x 10*, the
flow is less susceptible to vortex disturbances. Thus,
the first onset of instability is due to wave distur-
bances when Re,<9.6x10° and Re,>4.75x 10%
However, for 98 <Re, <218 or 9.6 x 10> <Re_<4.75
x 10%, the instability of the flow is due to vortex
disturbances. Similarly, for Pr =7 (Fig. 4) one can
see that the instability is initiated by wave distur-
bances when Re; <40.7 and Re, >257 or Re,<1.65
x10° and Re,>6.6x 10*, whereas for 40.7<Re,
<257 or 1.65x 10° < Re, < 6.6 x 10* the instability of
the flow is due to vortex disturbances.

The experimental study of Gilpin et al. [11] on the
thermal instability of water flow over a heated
horizontal flat plate with uniform surface tempera-
ture gives critical Grashof numbers Gr} which range
from 46 to 110, as compared to the analytical resuit
of Gr{ = 100 for Pr = 7 given by Wu and Cheng [7]
and shown in Fig. 4. The good agreement between
the analytical and experimental results is unusual
and surprising in view of the fact that linear theory
normally predicts the onset of vortex instability at a
Gr¥ value that is lower in the order of magnitude
than that observed in the experiments. In the work of
Wu and Cheng [7], the effect of buoyancy force on
the main flow was neglected in the analysis. In
addition, it has been revealed that there were a
couple of errors in the algebraic equations resulting
from their formulation of the finite-difference form of
the disturbance equations [13]. A preliminary study
by the present authors has indicated that these two
factors have contributed to the inaccuracy of the
analytical results of Wu and Cheng [7]. The validity
of their results is, therefore, open to questions and
the comparisons of their results with the present
wave instability results made in Figs. 3 and 4 should
be regarded only as qualitative.

Figure 5 shows the Reynolds number vs Grashof
number plot for the opposing flow case. In the
figure, the region that lies above a curve is for un-
stable flow, while the region that lies below is for
stable flow. In addition, it can be seen from the figure
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that flow of fluids with a Prandt]l number of 7 is
more stable than flow of fluids with a Prandtl
number of 0.7.

It is of interest to compare the neutral stability
curves from the non-parallel flow model with those
obtained from two approximate models: (a) the
parallel flow model with temperature perturbations
and (b) the non-parallel flow model without the
temperature perturbations. For the parallel flow
model, with the main flow and thermal fields being
treated as parallel [ie. u=u(y), v=0, T=T(y)],

equations (24) and (25) for the velocity and
temperature disturbances reduce to
(U =) (D? o) -(;7j)¢ tés
= —aRieL (D*=202D*+a*)d (33)
(U—c)s—gd) = -@(Dz—az)s. (34)

In the non-parallel flow model without the tempera-
ture perturbations, the main flow is assumed to be
non-parallel but the thermal field and the tempera-
ture disturbances are neglected altogether. Thus, the
stability problem consists only of equation (24)
without the buoyancy related ¢s term, and equation
(25) does not appear.

To compare typical neutral stability curves among
the three flow models, Figs. 6 and 7 have been
prepared, respectively, for Pr =0.7 and 7. In each
figure, curves are shown for representative buoyancy
force parameters for assisting and opposing flows,
along with the curve for pure forced convection
(Gr,/Re3? = 0). As can be seen from the figures, the
parallel flow model provides critical Reynolds num-
bers that are somewhat higher than, but are
generally in good agreement with, the nonparallel
flow model. When the temperature disturbances are
neglected in the nonparallel flow model, the
stability of the flow is seen to increase and decrease
tremendously for assisting flow (Gr,/Re¥?>0) and
opposing flow (Gr,/Re>? < 0), respectively. The rea-
son for this is that in the absence of the temperature
disturbances, a favorable pressure gradient induced
by the buoyancy force in the assisting flow case acts
to aid the forced flow. As a result, the flow becomes
more stable. For the opposing flow, on the other
hand, the buoyancy force induces an adverse
pressure gradient which retards the forced flow and
thus contributes to the destabilization of the main
flow.

It is interesting to observe from Figs. 6 and 7,
along with Figs. 1 and 2, that multiple neutral
stability curves exist only for assisting flow case at
certain buoyancy force parameters under the con-
dition of nonparallel flow model with temperature
perturbations. These multiple neutral stability curves
do not exist under the parallel flow model with
temperature perturbations nor under the nonparaliel
flow model without the temperature perturbations.
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Thus, the nonparallelism of the main flow along with
the existence of the temperature perturbations in
assisting flow are responsible for the occurrence of
the additional neutral stability curves. These two
factors combined are then believed to induce a flow
that is more unstable to a perturbed thermal wave
than to a perturbed hydrodynamic wave, as eviden-
ced by the existence of the extra neutral curves at a
lower range of wavenumbers.
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Representative eigenfunctions ¢, D¢ and s for «
=0.137, Rep =925, ¢, =0.309 and ¢; =0 for the
case of Pr = 0.7 and Gr /Re? = —0.015 are shown
in Fig. 8, where ¢,, D¢,, s, denote the real parts and
¢, D¢, s; the imaginary parts of the respective
eigenfunctions.

CONCLUSIONS

An analysis has been performed to investigate the
linear wave instability of laminar mixed convection
flow over an isothermal horizontal flat plate. The
eigenvalue problem consisting of the system of
linearized, coupled differential equations for the
disturbances along with their boundary conditions
has been solved by a direct Runge—Kutta integration
scheme, in conjunction with a filtering technique to
remove the parasitic errors inherent in the numerical
integration of the disturbance equations. Neutral
stability curves and critical Reynolds numbers are
presented for buoyancy parameter Gr,/Re3? ranging
from —0.02 to 0.1 for a Prandtl number of 0.7 and
from —0.0075 to 0.1 for a Prandtl number of 7. It is
found that for assisting flow the flow becomes less
stable to small disturbances as the buoyancy force
increases, whereas for the opposing flow the flow
becomes more stable as the buoyancy force increases.
Multiple neutral stability curves are also found to
exist in assisting flow over a certain range of the
buoyancy force parameter. In addition, it is con-
cluded that fluids with a Prandt! number of 0.7 are in
general more stable to small disturbances than fluids
with a Prandtl number of 7 for the case of assisting
flow. The opposite trend is true for the opposing flow
case.
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APPENDIX

Asymptotic solutions of ¢ and s and solution of the eigenvalue
problem

At the edge of the boundary layer n = 5., the mainflow
quantities assume their asymptotic values and equations
(24) and (25) reduce to

(1—C)(Dz—fxz)tb—éV(Wx)(DB—dZD)thicfs

i

= — (D*—202D*+a*)p (A1)
aRe;
(l—c)s—V(y )Ds = ———(D*—o2)s  (A2)
o oRe, Pr
where
vmm)=ﬂlfq[nx-F(nm>—:ﬁFg;”’]. (A3)

From the linearity of the equations, the physically
acceptable general solution to equations (Al) and (A2),
after the elimination of the positively growing exponential
solutions, assume the form

G = dr )+ Hd ()t esda () (Ada)
s, ) = cyS1(,,) 25, (o} Fessa(y,) (A4b)
where ¢, ¢, and c, are complex constants,
G o) =exp(~any), @2(n,)=-—5—7exp(—mn,),
m?—uo
) tixRe.s (=1 AS)
= <D { ~
9300 (rz—ocz)[rl—a2+rV(r,w)Re,_—iotReL(l—c)]ep e {
51{1) =0, $207.,) =0, s3(n,) = exp(—rn,)
and the exponents
Vi R 1 ,
m= —ﬂ—wz)‘e—[“+§{[V(nw)Re,‘]2+4[oc2+icheL(1—c 2
(A6)
Prvi R 1
r= _l(L;Q’l+5{[PrV(r,co)ReL]z+4[acz+iozReLPr(1—c)}}‘f2

are complex.
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Equations (A4) provide three independent sets of solutions (¢, s, ) (¢,, 5,), and (@3, s4) at 5 = u . Thus, the complete

solutions for ¢ and s at any # are given by

dn)=cid M)+ 0:0m)+c3d50m)
s{n) = ¢y s () Heasy{m+esss()

where (. 5;). {¢, 5,), and (@3, s3) satisfy equations (24),
(25) and (28). A direct Runge-Kutta integration scheme
was used to solve equations {24) and (25) for each of the
three independent sets of solutions. At each step of the
integration, the filtering technique of Kaplan {10] was
applied to remove the parasitic errors that arise from
truncation in the numerical integration so that the
independence of each of the three sets of solutions for ¢ and
s can be preserved.

The eigenvalue problem was solved in the following
manner. With the values of Prandtl number Pr and
buoyancy force parameter ¢ prescribed, two of the four
parameters o, Re;, ¢,, and ¢,, say Re; and c; or « and ¢;, are
preassigned certain values, while the values of the two
remaining parameters o and ¢, or Re; and ¢, are guessed.
The latter are the eigenvalues to be determined. Equations
(24) and (25) are then integrated and the boundary
conditions at the wall are checked to see if they are satisfied
for the initially guessed eigenvalues. To do this, equations

(A7a)
(A7b)

(A7) are evaluated at the wall {5 = 0) for two of the three
boundary conditions in equations (28a), s{0} = D¢(0} = 0,
along with a normalizing condition D*¢ = 1 at n = 0:

$(0) =0 = ¢,;5,(0}+¢,5,(0)+¢c35;(0)
DP(0) =0 = ¢, D¢ (0} + ¢, D¢,(0)+¢; DP,(0)  (AB)
D0y =1= 51D2¢1(0)+C2D2¢z(0)+03D2¢3(0)-

The complex constants ¢y, ¢, and ¢; are determined from
equations (A8), which are then substituted into the
remaining boundary condition at the wall to see if

0 =0=c;¢,(0)+c30,(0)+c3¢;(0) (A9)

is satisfied. If the condition (A9) is not satisfied, the guessed
eigenvalues are then improved by using a Newton—Raphson
differential correction iteration scheme, until it is satisfied
within a certain pre-assigned tolerance |2}, say, le] <10™°.

INSTABILITE ONDULATOIRE D'UN ECOULEMENT DE CONVECTION MIXTE
SUR UNE PLAQUE PLANE ET HORIZONTALE

Résumeé—On étudie analytiquement Uinstabilité linéaire d’un écoulement laminaire de convection mixte
sur une plaque plane, horizontale et isotherme. Les champs d’écoulement principal et de température
considérés dans cette analyse de stabilité sont traités comme n’étant pas paraliéles. On résout par une
méthode numérique d’intégration directe de Runge-Kutta, avec procédure d’itération, le systéme
d’équations linéarisées et couplées, avec leurs conditions aux limites, pour les perturbations de vitesse et
de température, systéme qui constitue un probléme de valeurs propres. Une technique de filtrage est
utilisée pour réduire les erreurs de troncature inhérantes 4 I'intégration numérique des équations de
perturbation. Des courbes de stabilité neutre et des nombres de Reynolds critiques sont présentés pour un
domaine de valeur du paramétre caractéristique couvrant aussi bien les situations d’écoulement favorisé
que contrarié, pour des nombres de Prandtl de 0,7 et de 7. On trouve en général que lorsque la force
d’Archiméde augmente, I'écoulement favorisé devient moins stable alors que I'écoulement contrarié
devient plus stable. Les régions d’écoulement stable ou instable sont représentées dans le plan nombre de
Grashof, nombre de Reynolds. Ces résultats sur linstabilité ondulatoire sont enfin comparés avec ceux de
I'instabilité tourbillonnaire.

WELLENINSTABILITAT DER STROMUNG BEI MISCHKONVEKTION
AN EINER HORIZONTALEN EBENEN PLATTE

Zusammenfassung—Es wurde die lineare Welleninstabilitit einer laminaren Strémung bei Mis-
chkonvektion an einer isothermen horizontalen ebenen Platte analytisch untersucht. Die benutzten
Hauptstrdmungs- und Temperaturfelder werden in der Stabilititsanalyse als nichtparallel behandelt. Ein
System von linearisierten, gekoppelten Differentialgleichungen und deren Randbedingungen fir die
Geschwindigkeits- und Temperaturstorungen stellt ein Eigenwertproblem dar. Dies wird mit Hilfe eines
numerischen direkten Runge-Kutta-Integrationsschemas und eines Iterationsverfahrens gelést. Es wurde
eine Filterungstechnik benutzt, um die Rundungsfehler zu beseitigen, die untrennbar mit der numerischen

Integration der Stdrungsgleichungen verbunden

sind. Neutrale Stabilititslinien und kritische

Reynolds—Zahlen werden fiir eine Reihe von Werten der Auftriebsparameter angegeben, die sowohl
gleichgerichtete als auch entgegengesetzte Stromungssituationen bei Prandtl-Zahlen von 0,7 bis 7,0
beriicksichtigen. Im allgemeinen wurde festgestellt, daBl die Strémung weniger stabil wird, wenn die
Auftriebskraft bei gleichgerichteter Stromung zunimmt und daB sie bei entgegengerichteter Stromung mit
Zunahme der Afutriebskraft stabiler wird. Gebiete der stabilen und instabilen Strémung sind in der
Auftragung der Grashof-Zahl iiber der Reynolds-Zahl gekennzeichnet. SchlieSlich werden die
vorliegenden Ergebnisse der Wellen instabilitdt mit denen der Wirbelinstabilitiit verglichen.
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BOJIHOBASI HEYCTOMUYHMBOCTb IMOTOKA CMEIIAHHOM KOHBEKLIUM HAJ
TOPU3OHTAJIBHONM TMJOCKON TIJIACTUHON

AHHOTaHM — AHATUTHYECKH MCCIIEAYETCs JIMHEHHAS BOJIHOBAs HEYCTOWYMBOCTL JAMHHAPHOTIO MOTOKA
CMEILAHHON KOHBEKLMH Hall M30TEPMHYECKOH TOPH3IOHTAJILHOH Niockod mnactuHoi. Mcenonbsyembie
NP4 aHAIM3€ YCTOWYMBOCTH OCHOBHBIE MMIAPOINHAMHYECKHE M TETJIOBBIE MO PACCMATPUBAIOTCA Kak
HenapaneibHble. CHCTEMA JIMHEAPH3OBAHHBLIX B3AHMOCBA3AHHBIX JMpPepeHUnaIbHBIX YPABHCHHA H
WX [PAHUYHBIE YCAOBUS A BOIMYLIEHHH CKOPOCTH M TeMIEpaTYPhl COCTABJAIOT 3aJa4y Ha COOCTBEH-
HbI€ 3HAYCHUS, KOTOpAs pEUIdeTcd NMPSAMbIM METOAOM 4YHCJIEHHOro MHTerpuposanus Pyure—Kyrra
COBMECTHO C METOIOM HTepalui. [ljis HCKIOYEHHs! OWHOOK, MOsBJIAIOLHNXCA BCACACTBME OTOpPACHI-
BAHHS 4YJICHOB INPH YUCJICHHOM WHTETPHPOBAHMM YPaBHEHMH BO3MYILCHHH, HCNONb3YETCS METOH
dunbrpaunn. fpeacrasieHbl KpuBble HEHTPAIbHOH YCTOWYMBOCTH M KpUTHYECKHE YuCiaa PeltHonbaca
IS AMana’3oHa 3HAMEHHH MapaMeTpa ITaBYYECTH, YYHTHIBAIOLMX KaK [OMYTHBIE, Tak W NPOTHBO-
MOJIOXKHO HafpaBsleHHble NOTOKH npu uuciax [lpangras 0,7 m 7. HaillgeHo, 4T0 MOTOK CTAHOBHTCA
MEHEee YCTOHYHBHIM 1O MEpE TOro, Kak MOAbEMHAS CHJA YBEJIHYMBACTCS NPU MOMYTHOM IMOTOKE, H
6oJiee yCTOHYMBBIM 1O Mepe TOro, Kak NOABEMHAN CHJIA PACTET NPU NPOTHBOIMNOJIOXHO HATPABIEHHOM
notoke. Ilpubenena amarpamma oOnacTeil ycTOHYMBBIX M HEYCTOHYMBBIX IIOTOKOB B MJIOCKOCTH
3aBucuMoOcTH 4yucia [pacroda ot uucna PeitHosnbaca. HakoHell, nmpoBefgHO CpaBHEHHE NOJYYEHHBIX
Pe3y.1bTATOB 11O BOJIHOBOH HEYCTOHYMBOCTH C PE3yabTATAMU NO BUXPEBOH HEYCTOMYMBOCTH.



