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Abstract-The linear wave instability of laminar mixed convective flow over an isothermal horizontal flat 
plate is studied analytically. The main flow and thermal fields employed in the stability analysis are 
treated as non-parallel. The system of linearized, coupled differential equations and their boundary 
conditions for the velocity and temperature disturbances constitutes an eigenvalue problem that is solved 
by a direct Runge-Kutta numerical integration scheme along with an iteration procedure. A filtering 
technique is employed to remove the truncation errors inherent in the numerical integration of the 
disturbance equations. Neutral stability curves and critical Reynolds numbers are presented for a range of 
values ot’buoyancy parameter covering both assisting and opposing flow situations for Prandtl numbers 
of 0.7 and 7.0. In general, it is found that the flow becomes less stable as the buoyancy force increases for 
assisting flow and more stable as the buoyancy force increases for the opposing flow. The regions of 
stable and unstable flows are also mapped out in a Grashof number vs Reynolds number plane. Finally, the 

present results from wave instability are compared with those from vortex instability 

NOMENCLATURE 

dimensionless phase velocity; 

real part of c; 

imaginary part of c ; 
specific heat at constant pressure; 
differential operator, d”/dq”; 
reduced stream function, equation (8); 
<-derivative of F ; 
gravitational acceleration; 

local Grashof number, gj3(T,- T,)x3/v2; 

Grashof number based on L, 

gp(Tw, - T, )p/v’ ; 
thermal conductivity; 
characteristic length, (vx/u,)“‘; 
mainflow pressure ; 
Prandtl number; 
local Reynolds number, u,x/v ; 
Reynolds number based on L, u,L/v; 

dimensionless temperature disturbance 
amplitude function ; 
mainflow temperature ; 
wall temperature ; 
free stream temperature ; 
time ; 
dimensionless mainflow axial velocity 

component ; 
mainflow axial velocity component; 
free stream velocity ; 
dimensionless mainflow normal velocity 
component; 
mainflow normal velocity component; 
axial coordinate; 
normal coordinate. 

* Present address: Department of Mechanical Engineer- 
ing, Villanova University, Villanova, PA 19085, U.S.A. 

Greek symbols 

a, dimensionless wavenumber based on L ; 

A coefficient of thermal expansion ; 

73 pseudo-similarity variable, 

equation (6); 

? Co, dimensionless boundary-layer thickness ; 

8, dimensionless temperature, equation (8); 

v, kinematic viscosity ; 

5, buoyancy parameter, IGr,l/Re:” ; 

P> density; 

@‘, [-derivative of 0 ; 

4% dimensionless velocity disturbance 

amplitude function ; 

*9 stream function of mainflow. 

Superscripts 

perturbation quantity; 
total quantity (mainflow quantity plus 
perturbation quantity). 

INTRODUCTION 

IN MANY transport processes involving forced con- 
vection, the flow may be modified considerably by 
buoyancy forces due to temperature variations in the 
fluid. As a result of the buoyancy force effects, the 
flow regime may be affected such that the forced flow 
becomes unstable and the transport characteristics 
change. It is, therefore, of great importance to 
analyze the stability characteristics of laminar mixed 
forced and free convection flow. There are two 
modes of instability, the Tollmien-Schlichting wave 
instability and the thermal or vortex instability, 
which commonly arise in laminar flow over a 
horizontal or inclined surface in the presence of 
temperature variations in the fluid. 
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The linear stability of the plane-wave mode of 
disturbances (i.e. the Tollmien-Schlichting waves) 
for Blasius flow has been studied extensively under 
both parallel and nonparallel main flow assump- 
tions. It has been shown [l] that for forced 

convection the nonparallel flow mode1 contributes to 
the destabilization of the main flow. In addition, in 
the absence of buoyancy force effect, it has been 
found that when the effect of viscosity variation with 
temperature is included, heating of the fluid has a 
stabilizing effect, whereas cooling has a destabilizing 
effect [2]. The linear wave instability of free 
convection flow over horizontal and inclined surfaces 
has been studied, but not as extensively as for the 
case of vertical flat plates. Gebhart [3] has made an 
excellent survey of analytical and experimental 
studies on this subject. It has been found that in such 
flow situations the coupling of temperature and 
velocity disturbances has a destabilizing effect. 
Recently, Haaland and Sparrow [4] investigated the 
plane-wave instability of free convection on inclined 

surfaces. They found that, as compared to the 
parallel flow model, treating the main flow as 
nonparallel shifts the neutral stability curves to 
higher Grashof numbers and higher wave numbers. 

They also found that as the angle of plate inclination 
relative to the horizontal is increased from 45 to 
135”, i.e. from upward-facing (45590”) to downward- 
facing (90-135’), the flow becomes more and more 
stabilized. This is in agreement with the experimental 
results of Lock et al. [5]. From a study of plane- 

wave instability of free convection boundary-layer 
flow over horizontal and slightly inclined surfaces, 
Pera and Gebhart [6] also concluded that in- 
clination stabilizes the flow. 

Recently, the thermal or vortex instability of 
horizontal, laminar forced convection boundary- 
layer flow has received some attention [7, 81. In a 
study on the instability of longitudinal vortices in 
forced convection flow adjacent to a horizontal flat 
plate, i.e. the Blasius flow, Wu and Cheng [7] 
employed a nonparallel flow model and considered 
the streamwise variation of the main flow and 
temperature fields in their analysis. They obtained 
the critical values of Gr,/Rr;,’ (in which Gr, and Re, 
are, respectively, the local Grashof number and the 
local Reynolds number) for Prandtl numbers rang- 
ing from 10m2 to lo4 and found that as the Prandtl 
number increases the critical value of Gr,/Re~~2 
decreases. 

In an analysis of laminar mixed convection flow 
over horizontal flat plates, Chen et ul. [9] showed 
that the buoyancy forces arising from density 
variations due to the temperature gradients in a fluid 
modify considerably its flow and thermal fields. It is, 
therefore, of great interest to examinine the effects of 
buoyancy force on the stability characteristics of 
such a mixed convection flow. This has motivated 
the present investigation. 

The present study deals with linear plane-wave 
instability of laminar. mixed forced and free con- 

vection boundary-layer flow along an isothermal 
horizontal flat plate. In the analysis, the temporal 
mode of disturbances are considered, and the main 
flow and thermal fields are derived from the local 
nonsimilarity solution. The main feature of this 
solution for the main flow is that it provides accurate 
flow and thermal fields that are continuous functions 
of the coordinate system. The governing differential 
equations of the disturbances for the velocity and 
temperature fields, which are coupled through the 
buoyancy forces, are obtained by linearization in 
which the nonparallelism of the main flow and 
thermal fields are taken into account. The resulting 
eigenvalue problem is solved by a direct 
Run&e-Kutta integration scheme along with an 
iteration procedure. To remove the “parasitic errors” 
inherent in the numerical integration of the distur- 
bance equations, a filtering technique introduced by 

Kaplan [lo] is employed after each step of in- 

tegration. Neutral stability curves and critical Rey- 
nolds numbers are presented for a range of values 
of buoyancy parameter covering both assisting and 
opposing flows, for Prandtl numbers of 0.7 and 7. 
The stable and unstable fow regimes are distin- 
guished in terms of critical Reynolds and Grashof 
numbers. Finally, the critical Reynolds numbers 

from the present analysis for plane-wave instability 
are compared with the analytical results of Wu and 
Cheng [7] and the experimental data of Gilpin et (11. 
[ 1 I] from the standpoint of thermal instability. 

AI\IAI.YSIS 

7he mainpow and thermalfields 
In analyzing the flow stability characteristics, one 

needs to know the velocity and temperature fields of 
the main flow. In the present analysis, the main flow 
quantities are derived from the work of Chen rt al. 
[9], who employed a local nonsimilarity method to 
solve the transformed conservation equations of the 
laminar boundary layer. The system of differential 
equations describing the main flow as given by Chen 
et cd. [9] for the local nonsimilarity model truncated 
at the second level are: 
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with the boundary conditions 

F’(&O) = F(l,O) = G’(<,O) = G(<,O) = (D(<,O) = 0, 

&LO) = I (5a) 

In the foregoing equations, the buoyancy parameter 
l(x) and the pseudosimilarity variable q(x,Y) are 
defined, respectively, as 

112 

where x and Y are the axial and normal coordinates, 
u, is the free stream velocity, and the local Grashof 

number Gr, and the local Reynolds number Re, are 
defined, respectively, by 

Gr, = gB(T,, - T,)x3/v2, Re, = u,x/v. (7) 

The reduced stream function F(t,q) and the dimen- 
sionless temperature 0(& 9) have the expressions 

IL(X> Y) T-T 
05, rl) = ___ 

(\w,x)‘~2’ 
et, d = + (8) 

w m 

where T, is the wall temperature, T, is the free 

stream temperature, and $(x) is the stream function 
that satisfies the continuity equation with 

ati a* 
u=--, 

?Y v= -Z’ 

The primes in equations (l)-(5) denote partial 
differentiation with respect to 9 and the dependent 
variables G and @ are defined by 

(10) 

The upper sign in the dual signs + or 7 in front of 
some of the terms in equations (l), (2) and (5) apply 
to assisting flow (i.e. TN,> T, for flow above the plate 
and TN,< T, for flow below the plate) and the lower 
sign to opposing flow (i.e. T,,,< T, and T,> T,, 

respectively, for flow above and below the plate). For 
flow below the plate, however, the temperature 
difference in the Gr, expression needs to be replaced 

by (T, - TN.). 

Formulation of the stability problem 
Consider a two-dimensional flow over a horizon- 

tal flat plate with velocity components ti and 6, 
respectively, in the streamwise and transverse direc- 
tions (i.e. in the x and y coordinates), static pressure 
6, and temperature F If the main flow quantities are 
u, U. p and T, upon which are superposed the 

perturbation quantities u’, VI, p’ and T’, one can 
write 

li = u(x, y)+ u’(x, y, t) 

6 = v(x, y) + v’(x, y, t) 

i = PC% Y) + P’(X, Y, t) 
(11) 

p= T(x,y)+T’(x,y,t). 

Since the main flow satisfies the conservation 
equations, substitution of equation (11) into 
Navier-Stokes equations and the energy equation 
for incompressible, two-dimensional time dependent 
fluid flow, followed by subtraction of the main flow 
and linearization of the disturbance quantities leads 
to the following disturbance equations: 

ad ad ,au au’ ,au 
~+u~+u~+L$-+v- 

Y 2Y 

= -$g+vr$+$) (12) 

ad ad ,av ad 90 
at+u~+lix+l&+v& 

aT’ aT ,aT aT’ ,aT 
~+u~+ux+l.?$+v& 

(14) 

The positive and negative signs in front of the 

buoyancy term in equation (13) refer, respectively, to 
flows above and below the plate. 

The next step is to eliminate the pressure terms in 
equations (12) and (13) by cross-differentiation and 
subtraction. The resulting equation is further simp- 

lified by employing the continuity equation &c/dx 

+&jay = 0 and the boundary-layer approximations 

ah as azv a% a2T a2T 
dX2yp ~“ay”’ s”,,z (15) 

With these operations, equations (12) and (13) can 
be combined to yield 

a% a9 

i 

a2d a% 
---+u 
aYdt axat aYax 8x2 ! 

For the case in which the main flow and thermal 
fields are treated as parallel, [that is, u = u(y), v = 0, 
and T = T(y)], the two terms involving v and dT/dx 
in equation (14) and the three terms involving c and 
d2v/aY2 in equation (16) vanish from these equations. 
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In the present study, the main interest is to The end result is 
investigate the effects of the non-parallelism of the 
main flow and thermal fields on the wave instability 
characteristics of the flow. Thus, the disturbances are 

(Li-c)(Di~2)~-~~-~[~~3-~2~)~ 

assumed to have the form of a plane wave travelling 
in the streamwise direction X. with its amplitude (04-221202+~4)+ (24) 

function depending only on y. The perturbation 
velocities and temperature are then related to their 

respective disturbance amplitude functions 4’ and s’ 
through the expressions 

$‘(_W,l.r t) = g’(J)ei~‘(x-c’l~ 
(17) zz -&(D’-a’)~ (25) 

L 
T’(& Y, [) = s’(Y)e’“““- (‘0 (18) 

where D” = d”/dq”, 5 = JGr,j/Re~‘2 is the buoyancy 

where II/’ is the stream function of the flow parameter as defined by equation (6) and Re, 

disturbances which satisfies the continuity equation = u,LIv is the Reynolds number based on the 

with characteristic length L. The plus and minus signs in 

?I/ uc = -.- ?l+V 
front of the buoyancy term in equation (24) apply for 

?J, ’ 
2” = - -?r (19) assisting and opposing flows, respectively. In arriving 

at equation (25), use is made of the relation 

For the temporal mode of disturbances, the wave 
number C/ is a positive real number and the phase 
velocity c’ = ci+ ic: is a complex number. The real 

c:T 
(26) z= K-T,) 

part of c’, c:, represents the phase velocity of wave 
propagation, while the imaginary part ci determines 

The boundary conditions for equations (24) and 

the attenuation or amplification of disturbances. The 
(25) require that the disturbance velocities u’, u’, and 

flow is stable, neutrally stable, or unstable depending 
temperature T’ vanish at the plate surface and in the 

on whether ci is negative, zero, or positive. 
free stream outside the boundary layer. That is, 

Substituting u’, c’ and T’ from equations (17)-(19) u’ = ~3’ = T’ = 0 at 
into equations (16) and (14) results in 

J’ = 0 (27a) 

u’= L.’ z T’= 0 us 4’--+~. (27b) 

(20) 
The main flow quantities U, t f3 and their 

derivatives appearing in equations (24) and (25) can 
be obtained from the solution of the main flow 

problem described by the system of equations 
(l)-(5). In particular, one can show that 

aF Pci @F 
” =_., I=_ 

Next, equations (20) and (21) are non- dl? a’12 r7$ 

dimensionalized by introducing the following dimen- 

sionless quantities 

a2v 1 

@ - 2Re, dq2 C 

PF d*G !?+,I_-<_ 
(29) 

a$ 8~’ ! 
(22) (70 

~ = O’, 
iv 
- = CD. 

+ a< 
CT 

c=--, x = CC’L, The eigenvalue problem consisting of the coupled 
4 differential equations (24) and (25) along with the 

where the characteristic length L is defined by boundary conditions, equations (28), is of the form 

(23) 
E(Re,, a, CJ, ; 5, Pr) = 0. (30) 

The solution of equation (30) for given Pr and 5 

In terms of the amplitude functions 4 and s these 
boundary conditions can be replaced with 

~=Dc#J=s=O at q=O (28a) 

C$ =Dc$ =s-+O as v-*cc. (28b) 
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gives a relationship among tl, Re,, c,., and ci. In are then determined by a differential correction 

determining the neutral stability curves, the values of shooting method until the boundary conditions for C#I 

c, and c[ or Re, satisfying equation (30) are sought as and s at the wall, equations (28a), are satisfied. The 

the eigenvalues for given values of Re, or CI with ci highlights of the numerical procedures are given in 

= 0. the Appendix. 

NUMERICAL METHOD OF SOLUTION 

The solutions to the main flow and thermal fields, 
as described by the system of equations (l)-(5) for 
the local nonsimilarity two-equation model, were 
carried out by a predictor-corrector integration 
scheme to improve the accuracy of the Runge-Kutta 

integration. A modified Newton-Raphson shooting 
methodwasemployed tofulfiltheconditionsattheedge 
oftheboundarylayers.ThedetailscanbefoundinChen 

et al. [9]. 

In the numerical integration of the stability 
equations, a step size of Aq = 0.04 was found to be 
adequate for all the parameters 4 that were in- 
vestigated. On the other hand, the step size for the 
integration of the main flow and thermal fields was 
taken as Aq = 0.02. In the numerical integrations of 
both the stability and main flow/thermal fields, the 
boundary layer thickness q, ranged from 8 to 7 as 
the 5 parameter was varied from -0.02 to 0.10. All 

computations were performed on an IBM 370/‘165 
digital computer using double precision arithmetic. 

Table 1. Results for F”(<, 0) and - S’(& 0), Pr = 0.7 and 7 

Pr = 0.7 Pr = 7 
Gr,JRe_;‘2 F”([, 0) - 0’(<, 0) Gr,/Re:‘* F”(L 0) -S’(rr,O) 

- 0.0200 
-0.0150 
-0.0100 
-0.OQlO 
- 0.0005 

0 
0.0010 
0.0025 
0.0050 
0.0075 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

0.2961 0.2851 
0.3065 0.2874 
0.3 148 0.2895 
0.33033 0.29232 
0.33119 0.29251 
0.33206 0.29268 
0.33377 0.29304 0.0010 0.33257 0.64634 
0.33633 0.29357 0.0025 0.33328 0.64671 
0.3406 
0.3448 
0.3489 
0.3650 
0.3806 
0.3959 
0.4099 
0.4245 
0.4377 0.3126 0.07 0.3635 0.66 19 
0.4512 0.3148 0.08 0.3678 0.664 1 
0.4640 0.3171 0.09 0.3720 0.6661 
0.4767 0.3193 0.10 0.3761 0.6682 

0.2944 0.0050 
0.2953 0.0075 
0.2961 0.01 
0.2993 0.02 
0.3023 0.03 
0.305 I 0.04 
0.3077 0.05 
0.3104 0.06 

-0.0075 0.3284 0.6442 
- 0.0050 0.3297 0.6449 
- 0.0010 0.33162 0.64584 
- 0.0005 0.33 186 0.64596 

0 0.33206 0.64591 

0.3344 0.6472 
0.3356 0.6478 
0.3370 0.6484 
0.3414 0.6508 
0.3460 0.6531 
0.3505 0.6554 
0.3548 0.6576 
0.3591 0.6598 

In solving the mathematical system for the 
stability problem, equations (24), (25) and (28) the 
Runge-Kutta integration scheme was used along 
with a filtering technique of Kaplan [lo] to supress 
the growth of the parasitic errors inherent in the 
numerical integration. To start the integration, the 
boundary conditions as expressed by equations (28b) 
need to be replaced by appropriate conditions that 
are satisfied at a finite distance 9, from the plate, i.e. 
at the edge of the boundary layer. This can be 
achieved by obtaining the general solution of 
equations (24) and (25) evaluated at u = q,. As 
shown in the Appendix, this gives rise to three sets of 
independent solutions (4i,si), (42,s2), and ($3,~3) 
at q = qm. For each set of the solutions, the 
integration of equations (24) and (25) starts at the 
edge of the boundary layer (‘1 = 9,) and proceeds 
towards the wall (q = 0). For prescribed values of Pr 

and 5, and with pre-assigned values of, say, Re, and 
ci or c, and ci, the eigenvalues u and c, or Re, and c, 

RESULTS AND DISCUSSION 

Numerical results were obtained for fluids with 
Prandtl numbers of 0.7 and 7 which are typical for 
air and water, respectively. The buoyancy force 
parameter Gr,/Re:” in the computations ranged 

from 0 to 0.1 for assisting flow (Gr,/Re:” >O) for 
both Prandtl numbers. For the opposing flow case 

(Gr,/Re_:” < 0), solutions were obtained for 
Gr,/Rez!2 values ranging from 0 to -0.02 for Pr 
= 0.7 and from 0 to -0.0075 for Pr = 7. The 
numerical results of F “(<,O) and -Q’(<,O) from the 
solutions of the main flow and thermal fields are 
tabulated in Table 1. 

Figures 1 and 2 show the neutral stability curves 
for representative buoyancy parameters, respectively 
for Prandtl numbers of 0.7 and 7. In the figures, the 
points along a neutral curve represent a neutrally 
stable flow (ci = 0), the region inside the curve 
corresponds to an unstable flow (c,>O), and that 
outside the curve to a stable flow (ci<O). From Figs. 
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FIG. 1. Representative neutral stability curves, Pr = 0.7. 

FIG. 2. Representative neutral stability curves, Pr = 7. 

1 and 2, it can be seen that for assisting flow 
(Gr,/Rezi2 >O), the neutral stability curves for both 
Pr = 0.1 and 7 shift to a lower Reynolds number Re, 

as the buoyancy parameter Gr,/Re:‘2 increases; that 
is, the flow becomes less stable. This stability 
characteristic is believed to arise from the transfer of 
energy between the temperature and velocity distur- 
bances in the forced flow. In the case of assisting 
flow, the buoyancy forces acting in the direction 
normal to the forced flow aid in moving the fluid 
particles away from the plate, and the interaction 
between the thermal and flow disturbances contri- 
butes to the destabilization of the forced flow. For 
the opposing flow, on the other hand, the flow 
becomes more stable as the buoyancy forces in- 
crease; that is the neutral stability curve shifts to a 

higher Reynolds number as Gr,/Rel’2 increases in 
the negative sense. In this case, the buoyancy forces 
aid in moving the fluid particles toward the plate and 
the interaction between thermal and flow disturbances 

enhances the stabilization of the forced flow. These 
behaviors of the neutral stability curves for assisting 
and opposing flow situations are similar to those 
obtained by Chen et al. [l, 121 for isothermal forced 
flow over horizontal plates with surface mass 
injection and suction, respectively. 

An inspection of Figs. 1 and 2 reveals also that for 
assisting flow with certain buoyancy parameters, 
there exists more than one neutral stability curve for 
the same Gr,/Rel/2 value, each curve having a 
distinct range of phase speeds c, and providing a 
different critical Reynolds number at a different 
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critical wavenumber. For example, for Pr = 7 and Table 2. Critical stability characteristics for 

for a buoyancy parameter of Gr,/Re:” = 0.1, one Pr = 0.7 

can see (Fig. 2) that there are three neutral stability 
curves. The three critical Reynolds numbers based 

Gr,/Rell’ ‘** ReE C: 
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on the characteristic length L, Rer = (~,L/v),,~~, are 
ReZ = 3.3, 15.6, and 22. The corresponding critical 
wavenumbers are a* = 0.065, 0.205, and 0.26 (with 
critical wave velocities CT = 0.947, 0.595, and 0.558) 
respectively. The maximum wavenumbers for the 

respective neutral curves are 0.175, 0.220, and 0.783. 
One can thus conclude that for Gr,/Re:” = 0.1 and 

Pr = 7, all disturbances will decay when Re, < 3.3, 
disturbances with wavenumbers larger than 0.175 
will decay when Re, < 15.6, and those with wave- 
numbers larger than 0.220 will die out when Re, < 22. 
However, by considering the fact that disturbances in 
general travel with all possible wavenumbers, one 
will have to select the smallest of the critical 
Reynolds numbers, ReZ = 3.3, as the basis for the 
stability criterion in the above example. The exis- 
tance of multiple neutral stability curves for the same 
buoyancy parameter will be explained later when the 
neutral stability curves from various flow models are 
compared in Figs. 6 and 7. 

The critical Reynolds number ReZ, along with the 
corresponding critical wavenumbers U* and critical 

0.05 

0.06 

0.07 

0.08 
0.09 
0.10 

0.100 3515 0.224 
0.137 925 0.309 
0.156 551 0.349 
0.176 305 0.399 
0.177 297 0.401 
0.177 290 0.403 
0.180 276 0.408 
0.183 257 0.414 
0.185 230 0.424 
0.188 207 0.435 
0.190 188 0.443 
0.203 132 0.48 1 
0.210 99.0 0.514 
0.025 27.9 0.886 
0.215 76.0 0.548 
0.070 9.5 0.928 
0.220 59.8 0.583 
0.085 6.6 0.960 
0.222 47.5 0.620 
0.090 5.4 0.944 
0.223 37.2 0.663 
0.093 4.6 1.017 
0.095 4.0 1.043 
0.100 3.7 1.061 
0.102 3.4 1.079 

wave velocities c: for the Gr,/Re:” parameters that at the relationships 
were investigated are listed in 

respectively for Pr = 0.7 and 7. 
The critical Grashof numbers 

characteristic length L) vs the 

Tables 2 and 3, 

GrZ (based on the 
critical Reynolds 

numbers Ret are plotted in Figs. 3, 4 and 5. These 
results are computed from the critical Reynolds 
numbers ReZ at various buoyancy parameters 
GrJRe:“. From the definition of Gr, 

Gr, = g/l (T, - T, )L?/v’ = Gr,/Rei12 (31) 

and from equations (6), (7) and (23), one can arrive 

Re, = Rei, Gr,lRe:12 = GrJRei. (32) 

Figures 3 and 4 show the GrZ vs ReE plots, 
respectively, for Pr = 0.7 and 7 for all the assisting 
flow parameters investigated and for the opposing 
flow cases with low buoyancy force parameters. The 
curves in Figs. 3 and 4 separate the stable flow 
region from the unstable one with regard to wave 

instabilities. Any flow condition as determined by 
any combination of the Reynolds number Re, and 

Grashof number Gr,, that lies above the curves 

Table 3. Critical stability characteristics for Pr = 7 

Gr,JRe2/2 a* Re; c; Gr,JRe:12 cl* Ret c: 

- 0.0075 
- 0.0050 
-0.0010 
- 0.0005 

0 
0.0010 

0.0025 

0.0050 

0.0075 

0.01 

0.02 

0.03 

0.125 1066 0.316 0.04 0.235 59.2 
0.150 539 0.362 0.105 24.0 
0.175 318 0.397 0.030 9.9 
0.176 303 0.401 0.05 0.240 47.9 
0.177 290 0.403 0.120 22.5 
0.183 266 0.408 0.040 7.2 
0.070 28.8 0.420 0.06 0.245 39.8 
0.185 238 0.414 0.135 20.9 
0.070 28.7 0.421 0.045 5.7 
0.190 201 0.424 0.07 0.255 33.8 
0.07 1 28.5 0.425 0.152 19.4 
0.197 175 0.432 0.052 4.8 
0.074 28.0 0.432 0.08 0.275 29.3 
0.200 155 0.438 0.170 18.0 
0.080 27.5 0.451 0.060 4.2 
0.220 103 0.460 0.09 0.230 24.9 
0.085 26.5 0.464 0.185 16.7 
0.004 50.0 0.716 0.062 3.7 
0.225 76.0 0.475 0.10 0.260 22.0 
0.095 25.3 0.488 0.205 15.6 
0.017 16.5 0.75 1 0.065 3.3 

0.489 
0.507 
0.785 
0.501 
0.530 
0.815 
0.513 
0.548 
0.850 
0.524 
0.564 
0.879 
0.534 
0.577 
0.892 
0.548 
0.585 
0.927 
0.558 
0.595 
0.947 



192 T. S. CHEN and A. MUCOGLU 

LPI 

-lOO- 
I _ 

-2002 ’ ’ ’ ’ “1’ ’ ’ ’ ’ ““’ 1 ’ ’ ’ 
IO loo 500 

“112 
l?e:=l?e, 

FIG. 3. Critical Grashof number vs critical Reynolds 
number. Pr = 0.7. 
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FIG. 4. Critical Grashof number vs critical Reynolds 
number, Pr = 7. 

FIG. 5. Critical Reynolds number vs critical Grashof 
number for opposing flow, Pr = 0.7 and 7. 

represents an unstable flow situation, while any point 
lying below the curves represents a stable one. For 
Prandtl number of 7, for example, a critical Grashof 
number of GrZ = 210 (Fig. 4) gives a corresponding 
critical Reynolds number of Re: = 100. From the 
relationships between Re, and Re,, equation (32), 
one finds that Re: = 104. Thus, for a Reynolds 
number of Re, = 100 or Re, = lo4 the flow will be 
stable to small disturbances when Gr, < 210 or, from 
equation (32), Gr,<2.1 x 10’ and unstable when Gr, 
>210 or Gr,>2.1 x 108. Similarly, when Gr, = 210 
(or Gr, = 2.1 x 10’) the flow will be stable when 

100 < Re, < 193 (or lo4 < Re, < 3.73 x 104) and un- 

stable when Re,< 100 or Re,> 193. A comparison 
between Figs. 3 and 4 indicates ‘that for assisting flow 

with Reynolds numbers Re,> 30 (i.e. Re,>900), 

fluids with a Prandtl number of 0.7 are generally 
more stable to small disturbances than fluids with a 

Prandtl number of 7. However, the effect of the 
Prandtl numbers on the stability characteristics of 
the flow diminishes when Re, < 900. 

The results of Wu and Cheng [7] for the thermal 

(or vortex) instability of Blasius flow over a 
horizontal flat plate are also shown with dotted lines, 
respectively, in Figs. 3 and 4 for comparisons with 
the present wave instability results. The region below 
the dotted line represents flow conditions which are 
stable to vortex instabilities, while the region above 
pertains to flow conditions that are unstable to 
vortex instabilities. It can be seen from Fig. 3 for Pr 
= 0.7 that for Reynolds numbers Re,<98 and Re, 

~218 or Re,<9.6x lo3 and Re,>4.75 x 104, the 
flow is less susceptible to vortex disturbances. Thus, 
the first onset of instability is due to wave distur- 
bances when Rex< 9.6 x lo3 and Re,>4.75 x 104. 
However, for 98 < Re, < 218 or 9.6 x lo3 < Re, < 4.75 

x 104, the instability of the flow is due to vortex 
disturbances. Similarly, for Pr = 7 (Fig. 4) one can 
see that the instability is initiated by wave distur- 

bances when Re,<40.7 and Re,>257 or Rex-c 1.65 
x lo3 and Re, > 6.6 x 104, whereas for 40.7 < Re, 

< 257 or 1.65 x lo3 < Re, < 6.6 x lo4 the instability of 
the flow is due to vortex disturbances. 

The experimental study of Gilpin et al. [ 111 on the 
thermal instability of water flow over a heated 

horizontal flat plate with uniform surface tempera- 
ture gives critical Grashof numbers GrZ which range 
from 46 to 110, as compared to the analytical result 
of GrZ = 100 for Pr = 7 given by Wu and Cheng [7] 
and shown in Fig. 4. The good agreement between 
the analytical and experimental results is unusual 
and surprising in view of the fact that linear theory 
normally predicts the onset of vortex instability at a 
Gri value that is lower in the order of magnitude 
than that observed in the experiments. In the work of 
Wu and Cheng [7], the effect of buoyancy force on 
the main flow was neglected in the analysis. In 
addition, it has been revealed that there were a 
couple of errors in the algebraic equations resulting 
from their formulation of the finite-difference form of 
the disturbance equations [ 131. A preliminary study 
by the present authors has indicated that these two 
factors have contributed to the inaccuracy of the 
analytical results of Wu and Cheng [7]. The validity 
of their results is, therefore, open to questions and 
the comparisons of their results with the present 
wave instability results made in Figs. 3 and 4 should 
be regarded only as qualitative. 

Figure 5 shows the Reynolds number vs Grashof 

number plot for the opposing flow case. In the 
figure, the region that lies above a curve is for un- 
stable flow, while the region that lies below is for 
stable flow. In addition, it can be seen from the figure 
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that flow of fluids with a Prandtl number of 7 is 
more stable than flow of fluids with a Prandtl 
number of 0.7. 

It is of interest to compare the neutral stability 
curves from the non-parallel flow model with those 
obtained from two approximate models: (a) the 
parallel flow model with temperature perturbations 
and (b) the non-parallel flow model without the 
temperature perturbations. For the parallel flow 
model, with the main flow and thermal fields being 
treated as parallel [i.e. u = u(y), u = 0, T= T(y)], 

equations (24) and (25) for the velocity and 
temperature disturbances reduce to 

(a_c)(o2-.‘)~-~~~~~~s 
= -&D4-2azD2+a4)c$ (33) 

L 

89 
(U-c)s--$b = - 

?rl 
$& (02 - a2)s. (34) 

L 

In the non-parallel flow model without the tempera- 

ture perturbations, the main flow is assumed to be 
non-parallel but the thermal field and the tempera- 
ture disturbances are neglected altogether. Thus, the 
stability problem consists only of equation (24) 
without the buoyancy related fs term, and equation 

(25) does not appear. 
To compare typical neutral stability curves among 

the three flow models, Figs. 6 and 7 have been 
prepared, respectively, for Pr = 0.7 and 7. In each 
figure, curves are shown for representative buoyancy 
force parameters for assisting and opposing flows, 
along with the curve for pure forced convection 
(Gr./Re512 = 0). As can be seen from the figures, the 
parklel “flow model provides critical Reynolds num- 
bers that are somewhat higher than, but are 
generally in good agreement with, the nonparallel 
flow model. When the temperature disturbances are 
neglected in the nonparallel flow model, the 

stability of the flow is seen to increase and decrease 
tremendously for assisting flow (Gr,/Re.z’2 > 0) and 
opposing flow (Gr,/Re:” < 0), respectively. The rea- 
son for this is that in the absence of the temperature 

disturbances, a favorable pressure gradient induced 
by the buoyancy force in the assisting flow case acts 
to aid the forced flow. As a result, the flow becomes 
more stable. For the opposing flow, on the other 
hand, the buoyancy force induces an adverse 
pressure gradient which retards the forced flow and 
thus contributes to the destabilization of the main 
flow. 

0.2 

0.1 

0 

I IO IO' IO" 
R% 

FIG. 7. A comparison of representative neutral stability 
curves among various models, Pr = 7. 
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FIG. 8. Eigenfunctions for c( = 0.137, Re, = 925, = C, 0.309, 
and = 0 with Pr = ci 0.7, Gr,/Rel’* = -0.015. 

It is interesting to observe from Figs. 6 and 7, Thus, the nonparallelism of the main flow along with 
along with Figs. 1 and 2, that multiple neutral the existence of the temperature perturbations in 
stability curves exist only for assisting flow case at assisting flow are responsible for the occurrence of 
certain buoyancy force parameters under the con- the additional neutral stability curves. These two 
dition of nonparallel flow model with temperature factors combined are then believed to induce a flow 
perturbations. These multiple neutral stability curves that is more unstable to a perturbed thermal wave 
do not exist under the parallel flow model with than to a perturbed hydrodynamic wave, as eviden- 
temperature perturbations nor under the nonparallel ced by the existence of the extra neutral curves at a 
flow model without the temperature perturbations. lower range of wavenumbers. 

HMT Vol. 22. No. 2 -B 

IO Id IO’ IO’ 

FIG. 6. A comparison of representative neutral stability 
curves among vartous models, Pr = 0.7. 
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Non-parallel Flow 
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Representative eigenfunctions 4, 04 and s for a 
= 0.137, RQ = 925, c, = 0.309 and ci = 0 for the 
case of Pr = 0.7 and Gr,/Rez!’ = -0.015 are shown 

in Fig. 8, where 4,, D$,, s, denote the real parts and 
4,, D4i3 si the imaginary parts of the respective 
eigenfunctions. 

CONCLUSIONS 

An analysis has been performed to investigate the 
linear wave instability of laminar mixed convection 
flow over an isothermal horizontal flat plate. The 
eigenvalue problem consisting of the system of 
linearized, coupled differential equations for the 
disturbances along with their boundary conditions 
has been solved by a direct Runge-Kutta integration 
scheme, in conjunction with a filtering technique to 
remove the parasitic errors inherent in the numerical 
integration of the disturbance equations. Neutral 

stability curves and critical Reynolds numbers are 
presented for buoyancy parameter Gr,,/Re:‘2 ranging 
from -0.02 to 0.1 for a Prandtl number of 0.7 and 
from -0.0075 to 0.1 for a Prandtl number of 7. It is 
found that for assisting flow the flow becomes less 
stable to small disturbances as the buoyancy force 

increases, whereas for the opposing flow the flow 
becomes more stable as the buoyancy force increases. 
Multiple neutral stability curves are also found to 
exist in assisting flow over a certain range of the 
buoyancy force parameter. In addition, it is con- 
cluded that fluids with a Prandtl number of 0.7 are in 

general more stable to small disturbances than fluids 
with a Prandtl number of 7 for the case of assisting 
flow. The opposite trend is true for the opposing flow 

case. 
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APPENDIX 
Asymptotic solutions qf 4 and s and solution of the eigenualue 
problem 

At the edge of the boundary layer q = 9,) the mainflow 
quantities assume their asymptotic values and equations 
(24) and (25) reduce to 

(l-C)(D2-oz)~-kV(1I~)(D3-12D)~+C;i 

= -&D4-2~2D2+24)~ (Al) 
L 

i 
(l-(.)s--V(q,)Ds = - 

G( 
&(D”-a’)~ (A2) 

I. 
where 

=(rl,) 
s,-e7,)-t- x I (A3) 

From the linearity of the equations, the physically 
acceptable general solution to equations (Al) and (A2), 
after the elimination of the positively growing exponential 
solutions, assume the form 

oi(e.)=c,91(~.)+cz~z(~.)+(.3~3(Y11,) 
s(J7,) = ClSl (rl.~)+c,s,(rl*)+C3SJ(~.,) 

where c,, c2 and c) are complex constants, 

I, = exp(-aV=), 

(Ada) 

(A&) 

and the exponents 

+iaRe,t 

‘3(9ffi)= (r2-~2)[r2-a2+rV(~m)ReL-iaReL(1-c)] 
ew(-rv,) 

s~(rlm) = 0, SZ(~~) = 0, s3(qja) = exp(-rl-a) 

VrlE)ReL 1 
m = -~+2{[V(~m)ReL]Z+4[a2+ictRe,(l-c)]}’~Z 

2 

PrV(v m )Re, 1 r= - 
2 

+2{[PrV(~~)Re,]Z+4[a2+iaReLPr(l-c)]}1’2 

(A% 

(‘46) 

are complex. 
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Equations (A4) provide three independent sets of solutions (+i, s, ), ($z, s2), and (43, sj) at rr = qm. Thus, the complete 
solutions for & and s at any 9 are given by 

4(rl) = cl~,(rl)+c,~,(vl)+C3~j(~) (A7a) 

s(g) = c,s,(rl)+c,s,(rl)+c,s,(9f (A7b) 

where (4i. si). (@z. x2), and (d3. .x3) satisfy equations (24). 
(25) and (28). A direct Runge-Kutta integration scheme 
was used to solve equations (24) and (25) for each of the (A7) are evaluated at the wall (r) = 0) for two of the three 
three inde~ndent sets of solutions. At each step of the boundary conditions in equations (28a), s(0) = B&O) = 0, 
integration, the filtering technique of Kaplan [lo] was along with a normalizing condition Dz4 = 1 at q = 0: 
applied to remove the parasitic errors that arise from 
truncation in the numerical integration so that the s(0) = 0 = c,s,(0)+c,s,(0)+c,s,(0) 

independence of each of the three sets of solutions for I$ and o&o) = 0 = c*~~~(o)+c,~~,(o)+c,~#,(o) (AS) 
s can be preserved. 

The eigenvalue problem was solved in the following 
manner. With the values of Prandtl number Pr and 
buoyancy force parameter c prescribed, two of the four 
parameters a, Re,, c,, and ci, say Re, and ci or CI and ci, are 
preassigned certain values, while the values of the two 
remaining parameters a and c, or Re, and c, are guessed. 
The latter are the eigenvaiues to be determined. Equations 
(24) and (25) are then integrated and the boundary 
conditions at the wall are checked to see if they are satisfied 
for the initialiy guessed eigenvalues. To do this. equations 

DQ#J(O) = 1 = c,DZ~,(O~+c,D~~,(0)+c,D~~,(O). 

The complex constants cl, ca and cj are determined from 
equations (AS), which are then substituted into the 
remaining boundary condition at the wall to see if 

~(~)=~=~~~,(~)+~*~~(o)+c~~~(o) (A9) 

is satisfied. If the condition (A9) is not satisfied, the guessed 
eigenvalues are then improved by using a Newton-Raphson 
differential correction iteration scheme, until it is satisfied 
within a certain pre-assigned tolerance /c/, say, /E/ < 10sh. 

INSTABILITE ONDULATOIRE DUN ECOULE~ENT DE CONVECTION MIXTE 
SUR UNE PLAQUE PLANE ET HORIZONTALE 

I&urn&-On itudie analytiquement I’instabilite lin6aire dun ecoulement laminaire de convection mixte 
sur une plaque plane, horizontafe et isotherme. Les champs d’ecoulement principal et de temperature 
consideris dans cette analyse de stabilite sont traitis comme n’etant pas paralleles. On r&out par une 
methode numerique d’integration directe de Runge-Kutta, avec procedure d’iteration, le systeme 
d&rations linearis& et couplees, avec leurs conditions aux limites, pour les perturbations de vitesse et 
de temperature, systeme qui constitue un probltme de valeurs propres. Une technique de f&rage est 
utilisie pour r&mire les erreurs de troncature inherantes P I’integration numbrique des equations de 
perturbation. Des courbes de stabilitt neutre et des nombres de Reynolds critiques sont prisentts pour un 
domaine de valeur du paramt%re caracteristique couvrant aussi bien les situations d’~oulement favorise 
que contrarit, pour des nombres de Prandtl de 0,7 et de 7. On trouve en gtneral que lorsque la force 
d’ArchimtYe augmente, I’ecoulement favorise devient moins stable alors que I’ecoulement contrarit 
devient plus stable. Les regions d’ecoulement stable ou instable sont representtes dans le plan nombre de 
Grashof, nombre de Reynolds. Ces resultats sur ~instabilit~ ondulatoire sont entin compares avec ceux de 

I’instabilite tourbillonnaire. 

WELLENINSTABILITAT DER STRGMUNG BEI MISCHKONVEKTION 
AN EINER HORIZONTALEN EBENEN PLATTE 

Zusammenfassung-Es wurde die lineare Welleninstabilitat einer laminaren Stromung bei Mis- 
chkonvektion an einer isothermen horizontalen ebenen Platte analytisch untersucht. Die benutzten 
Hauptstriimungs- und Temperaturfelder werden in der Stabilitatsanalyse als nichtparalle1 behandelt. Ein 
System von linea~sierten, gekoppelten Differentialgleichungen und deren Randb~~ngungen fiir die 
Geschwindigkeits- und Temperaturstorungen stellt ein Eigenwertproblem dar. Dies wird mit Hilfe eines 
numerischen direkten Runge-Kutta-Integrationsschemas und eines Iterationsverfahrens gel&t. Es wurde 
eine Fiiterungstechnik benutzt, urn die Rundungsfehler zu beseitigen, die untrennbar mit der numerischen 
Integration der St~rungsgIeichungen verbunden sind. Neutrale Stabilit~tsIinien und kritische 
ReynoldssZahlen werden fur eine Reihe von Werten der Auftriebsparameter angegeben, die sowohl 
gleichgerichtete als such entgegengesetzte Stromungssituationen bei Prandtl-Zahlen von 0,7 bis 7,0 
beriicksichtigen. Im allgemeinen wurde festgestellt, d&3 die Stromung weniger stab3 wird, wenn die 
Auftriebskraft bei gleichgerichteter Stromung zunimmt und da8 sie bei entgegengerichteter Striimung mit 
Zunahme der Afutriebskraft stabiler wird. Gebiete der stabilen und instabilen Stromung sind in der 
Auftragung der Grashof-Zahl iiber der Reynolds-Zahl gekennzeichnet. SchlieIJlich werden die 

voriiegenden Ergebnisse der Wellen instabilitlt mit denen der Wir~linstabiiit~t verglichen. 
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BOJIHOBAR HEYCTOfi‘IMBOCTb nOTOKA CMElUAHHOfi KOHBEKqMM HAA 
rOPM30HTAJlbHOfi nJIOCKOi? FUlACTkiHOfi 

AmoTawn- han&imrecm kiccnenyexn nWHeBHas BonHoBan HeycToSWsocTb naMWHapHor0 noToKa 

CMeIIIaHHOi4 KOHBeKUWW HBA W30repMWqeCKOfi rOpW30HTasZLHOir UJlOCKOti n.QaCTWHOti. MCnOnb3yeMbIe 

11pw aHam3e ~CT~~WBOCTW ocHoBHb1e rWnponWHaMWqecKWe W TennoBbIe nom paccMaTpWBaIOTca KBK 

HenapanaeAbHbIe. CWCTeMa JlWHeapW3OBiiHHbIX BJaWMOCBISaHHbIX &N$epeHUWanbHbIX ypaBHeHWti W 

WX I-paHWqHbIe yCnOBWs NIll B03MylUeHWti CKOpOCTW W TeMnepaTypbI COCTaBJIRK)T 3ana'ty Ha COhTBeH- 

Hble SHaqeHWII, KOTOpaR peUIaeTCR np5IMbIM MeTOnOM 'IWCneHHOrO WHTerpWpOBaHWS PyHI?SKyTTa 

COBMeCTHO C MeTOnOM WTepaUWii. ,&I% WCKnMqeHWll OUIW60K. nOllBnR5OIUWXCII BCnenCTBWe OT6paCbI- 

BidHAIl YneHOB npW YWCneHHOM WHTerpWpOBaHWW ypaBHeHWii BOSMyI,&?HAi?, WC"Onb3yeTCR MeTOn 

~WJIbT~dUMW. npenCTaB,%HbI KpWBble HefiTpa.lbHOI? YCTOtiVWBOCTW W KpWTWVeCKWe YWCna h%HO."b~G3 

nnx nWaIla3oHa 3HaqeHWB napaMeTpa n.TaBysecTW, yqW_rbIBamomWx KaK nonyTHbIe, TaK W ~POTHBO- 

nOnOmH0 HanpaBAeHHbIe IIOTOKW npW 'SWCniiX npaHnTJl!A 0.7 II 7. HaheHo. gT0 n0TOK CTaHOBWTCII 

MeHee ycTohWBb1M no Mepe Tore, KBK nomebeMHaR cWna yBenWqWaaeTcR npW i10ny~H0~ noTore, W 

6onee ycToiirWBb1M no Mepe TO~O.KBK nonbema9 cWna pacreT npW npoTWBononomHo HanpasneHHoM 

"OTOKC. npWBeneHa nWarpaMMa o6nacTeii yCTOi&WBbIX Z HeyCTOihWBbIX IIOTOKOB B "nOCKOCTW 

3a8WcWMocTW wcna rpacro+a OT YWcna Peikonbnca. HaKoHeU, npoBeneH0 cpaBHeHWe OonyqeHHbIx 

p-e3yAbTaTOB 110 BOnHOBOii HeyCTOihBOCTW C p‘Z3ynbTiiTaMW "0 BWXpeBOii HeyCTOiiVWBOCTW. 


